Incremental Search Method in MATLAB

Mike Renfro

September 16, 2004
Review of Previous Lecture
Incremental Search Method in MATLAB

An Incremental Search Problem
 Problem Analysis
 Problem Restatement
 Program Strategy

Incremental Search Program Solution
 A Function That Calculates Stiffness of Fastened Plates
 A Program to Find the Bolt Diameter
 A Better Program to Find the Bolt Diameter

Homework
Part I

Review of Previous Lecture
Review of Previous Lecture

- Control structures
 - If/then/else
 - For loops
 - While loops
 - Vectorized loops

- Working with data and graphics
 - Loading and saving data with text files
 - Loading and saving data with MATLAB binary files
 - X-Y plots
Part II

Incremental Search Method in MATLAB
Recall the incremental search method from an earlier lecture.

- The value of x is incremented from an initial value of x_1, successively until a change in the sign of the function $f(x)$ is observed.
- Since $f(x)$ changes sign between x_i and x_{i+1}, it is assumed that it has a root on the interval (x_i, x_{i+1}).

Mike Renfro

Incremental Search Method in MATLAB
Problem 2.6, p.121: If two plates are fastened by a bolted joint, the stiffness of the fastened members or plates \(k_m \) is given by:

\[
k_m = \frac{0.577\pi Ed}{2 \ln \left(5 \frac{0.577l + 0.5d}{0.577l + 2.5d} \right)}
\]

where \(E \) is Young’s modulus of the fastened members, \(d \) is the diameter of the bolt, and \(l \) is the thickness of the fastened members. Find the value of \(d \) that corresponds to a value of \(k_m = 7.5 \times 10^6 \) psi when \(E = 12 \times 10^6 \) psi and \(l = 1.5 \) in.
Problem Analysis

\[k_m = \frac{0.577 \pi Ed}{2 \ln \left(\frac{5\,0.577l+0.5d}{0.577l+2.5d} \right)} \]

What form does the equation have? \(f(x) = 0 \), \(f(x) = g(x) \), or \(f(x) = C \)? \(f(x) = C \) — we’re looking for a value where the stiffness equation yields a value of \(7.5 \times 10^6 \) psi. So, to do root-finding, we’ll reformat the equation as \(f(x) - C = 0 \).

What variables are held constant for this problem? \(E, l \) — they’re both given specific values in the problem setup.

What variables are allowed to vary for this problem? \(d \)
Problem Restatement

Find a value of d such that

\[
\frac{0.577\pi E d}{2 \ln \left(\frac{5 \cdot 0.577 l + 0.5 d}{0.577 l + 2.5 d} \right)} - k_m = 0
\]

when $E = 12 \times 10^6$ psi, $l = 1.5$ in, and $k_m = 7.5 \times 10^6$ psi.
Program Strategy

- Write a function that computes the stiffness of the fastened plates k_m when given values for E, l, and d.
- Write a program that does the following:
 - Sets E and l to their given constant values.
 - Sets k_m to its target value.
 - Sets an initial guess for d, and a stepsize Δd.
 - Calls the function to calculate the stiffness of the fastened plates using both d and $d + \Delta d$ for the bolt diameter.
 - Compares the sign of the returned function values.
 - If the signs match (both positive or both negative), increase d to $d + \Delta d$ and repeat.
 - If the signs don’t match (one function returns positive, and the other returns negative), the required value of d is between the two bolt diameters used. Print that range of d values and exit.
A Function That Calculates Stiffness of Fastened Plates

Write a function that computes the stiffness of the fastened plates k_m when given values for E, l, and d.

Function header for `computeboltedplatestiffness.m`:

```matlab
function k = computeboltedplatestiffness(E, d, l)
```
A Function That Calculates Stiffness of Fastened Plates

Function header and help for the function:

```matlab
function k=computeboltedplatestiffness(E,d,l)
% computeboltedplatestiffness: Calculate stiffness
% of plates fastened by a bolted joint. (Rao,
% Problem 2.6)
%
% Usage: k=computeboltedplatestiffness(E,d,l)
%
% where: k = stiffness
% E = modulus of elasticity
% d = bolt diameter
% l = thickness of fastened plates
```
A Function That Calculates Stiffness of Fastened Plates

Full function:

```matlab
function k = computeboltedplatestiffness(E, d, l)
% computeboltedplatestiffness: Calculate stiffness
% of plates fastened by a bolted joint. (Rao, Problem 2.6)
%
% Usage: k = computeboltedplatestiffness(E, d, l)
%
% where: k = stiffness
% E = modulus of elasticity
% d = bolt diameter
% l = thickness of fastened plates

k = (0.577*pi*E*d) / ...
    (2*log((5*(0.577*l+0.5*d))/(0.577*l+2.5*d)));
```
A Program to Find the Bolt Diameter

Program documentation for prob_2_6.m:

```matlab
% Rao Problem 2.6 -- If two plates are fastened by a bolted joint, the stiffness of the fastened members or plates k_m is given by:

% 
% k_m = (0.577*pi*E*D)/(2*log(5*(0.577*L+0.5*D)/(0.577*L+2.5*D)))

% where E is Young's modulus of the fastened members, D is the diameter of the bolt, and L is the thickness of the fastened members. Find the value of D that corresponds to a value of k_m = 7.5e6 psi when E = 12e6 psi and L = 1.5 in.
```
A Program to Find the Bolt Diameter

Set E, l, k_m, d, and Δd to their constant or initial values.

clear all;
stepSize = 0.1;
desiredStiffness = 7.5e6;
youngsMod=12e6;
boltDiam = 0.1;
plateThick = 1.5;
A Program to Find the Bolt Diameter

Call the function to calculate the stiffness of the fastened plates using both d and $d + \Delta d$ for the bolt diameter, then subtract the target k_m from each result.

\[
\text{computeboltedplatestiffness}(\text{youngsMod}, \ldots, \\
\text{boltDiam}, \text{plateThick}) - \text{desiredStiffness}
\]

\[
\text{computeboltedplatestiffness}(\text{youngsMod}, \ldots, \\
\text{boltDiam} + \text{stepSize}, \text{plateThick}) - \text{desiredStiffness}
\]
A Program to Find the Bolt Diameter

Compare the sign of the final results.

\[
\text{sign}(\text{computeboltedplatestiffness}(\text{youngsMod}, \ldots, \text{boltDiam}, \text{plateThick}) - \text{desiredStiffness})
\]

\[
\text{sign}(\text{computeboltedplatestiffness}(\text{youngsMod}, \ldots, \text{boltDiam} + \text{stepSize}, \text{plateThick}) - \text{desiredStiffness})
\]
A Program to Find the Bolt Diameter

If the signs match (both positive or both negative), increase d to $d + \Delta d$ and repeat.

```matlab
while (sign(computeboltedplatestiffness(youngsMod,...
boltDiam,plateThick)-desiredStiffness) == ...
    sign(computeboltedplatestiffness(youngsMod,...
boltDiam+stepSize,plateThick)-... 
    desiredStiffness))
    boltDiam = boltDiam + stepSize;
end
```
A Program to Find the Bolt Diameter

When the signs don’t match, print out the two bolt diameter values with the opposite signs.

```matlab
fprintf('Found a root between %f and %f\n',...
boltDiameter, boltDiameter + stepSize);
```
A Program to Find the Bolt Diameter

clear all;
stepSize = 0.1;
desiredStiffness = 7.5e6;
youngsMod=12e6;
boltDiam = 0.1;
plateThick = 1.5;
while (sign(computeboltedplatestiffness(youngsMod,...
boltDiam,plateThick)-desiredStiffness) == ...
 sign(computeboltedplatestiffness(youngsMod,...
boltDiam+stepSize,plateThick)-...
 desiredStiffness))
 boltDiam = boltDiam + stepSize;
end
fprintf(’Found a root between %f and %f\n’,...
boltDiameter,boltDiameter+stepSize);
Drawbacks and Warnings for First Program

What if we make a bad choice for the initial value of d?

This program will run forever if our initial guess for d is higher than the root value.
Improvements to First Program

Set a maximum number of steps the program will run. If the program runs for too many steps, it can automatically stop itself so we can pick a more appropriate initial guess or step size for the next run.
Changes to First Program

Add a variables to set a limit on the number of steps, and to keep track of the current step number:

```matlab
stepMax = 10000;

nSteps=0;
```
Use the new variables as part of the decision-making process:

```matlab
while (sign(computeboltedplatestiffness(youngsMod,...
boltDiam,plateThick)-desiredStiffness) ... == ...
    sign(computeboltedplatestiffness(youngsMod,...
boltDiam+stepSize,plateThick)-... desiredStiffness) ...
& nSteps < stepMax)
```
Changes to First Program

Make sure you update the step number each time you go through the loop:

\[
\text{boltDiam} = \text{boltDiam} + \text{stepSize}; \\
\text{nSteps} = \text{nSteps} + 1;
\]
Changes to First Program

Change the program’s output to show whether or not we found a solution:

```matlab
if nSteps == stepMax
    fprintf('Gave up after %d steps', nSteps);
else
    fprintf('After %d steps, ', nSteps);
    fprintf('found a root between %f and %f\n', ...
            boltDiameter, boltDiameter + stepSize);
end
```
Final Program (Part 1)

```matlab
clear all;
stepMax = 10000;
stepSize = 0.1;
desiredStiffness = 7.5e6;
youngsMod = 12e6;
boltDiam = 0.1;
plateThick = 1.5;
nSteps = 0;

while (sign(computeboltedplatestiffness(youngsMod,...
    boltDiam, plateThick) - desiredStiffness) == ...
    sign(computeboltedplatestiffness(youngsMod,...
        boltDiam + stepSize, plateThick) -...
        desiredStiffness) ...
    & nSteps < stepMax)
    boltDiam = boltDiam + stepSize;
    nSteps = nSteps + 1;
end
```
Final Program (Part 2)

```matlab
if nSteps == stepMax
    fprintf('Gave up after %d steps ', nSteps);
else
    fprintf('After %d steps, ', nSteps);
    fprintf('found a root between %f and %f\n', ...
        boltDiameter, boltDiameter + stepSize);
end
```
Homework

Use your incremental search program to re-solve the problem from September 2:

Find a root of $f(x) = x^3 - 3$ starting at $x_0 = 1$ and $\Delta x = 0.1$. Then, using the first root estimate, use a step size of $\Delta x = 0.01$ to find the root more precisely. How does each estimate differ from the analytical solution?

Next, make sure your program will automatically terminate if it can’t find a solution in a reasonable number of steps. Test what happens if you try to find a root of $f(x) = x^3 - 3$ starting at $x_0 = 1$ and $\Delta x = -0.1$. Does the program stop correctly?