Solution of Nonlinear Equations: Graphical and Incremental Search Methods

Mike Renfro

September 2, 2004
Solution of Nonlinear Equations

Introduction
- General Form of the Problem
- Types of Nonlinear Equations
- Graphical Interpretation

Example: Fluid Mechanics

Incremental Search Method

Homework
Part I

Solution of Nonlinear Equations
Many engineering problems involve finding one or more values of x that satisfy one of the following forms of equations:

1. **Form 1:**
 \[f(x) = 0 \]

2. **Form 2:**
 \[g(x) = C \\ f(x) = g(x) - C = 0 \]

3. **Form 3:**
 \[g(x) = h(x) \\ f(x) = g(x) - h(x) = 0 \]
Types of Nonlinear Equations

- Polynomial equations
- Transcendental equations
 - Exponential equations
 - Logarithmic equations
 - Trigonometric equations
 - Hyperbolic equations
Solutions to equations of the form $f(x) = 0$ can be seen as places where the graph of $f(x)$ crosses or touches the x axis.

![Graphical Interpretation of Nonlinear Equations](image)

Figure 2.1
x_1, x_2, x_3, x_4 - roots of the equation.
Graphical Interpretation

Solutions to equations of the form $f(x) = g(x)$ can be seen as places where the graphs of $f(x)$ and $g(x)$ intersect.
Water is discharged from a reservoir through a long pipe as shown. By neglecting the change in the level of the reservoir, the transient velocity of the water flowing from the pipe, $v(t)$, can be expressed as

$$
\frac{v(t)}{\sqrt{2gh}} = \tanh \left(\frac{t}{2L} \sqrt{2gh} \right),
$$

where h is the height of the fluid in the reservoir, L is the length of the pipe, g is the acceleration due to gravity, and t is the time elapsed from the beginning of the flow.
Governing Equations

\[\frac{v(t)}{\sqrt{2gh}} = \tanh \left(\frac{t}{2L} \sqrt{2gh} \right) \]

Find the value of \(h \) necessary for achieving a velocity of \(v = 5 \) m/s at time \(t = 3 \) s when \(L = 5 \) m and \(g = 9.81 \) m/s\(^2\).
Solution of Equation

Substitute the values for v, t, L, and g into the previous equation on the left side

$$\frac{v(t)}{\sqrt{2gh}} = \frac{5}{\sqrt{2(9.81)h}} = \frac{1.1288}{\sqrt{h}}$$

and the right side

$$\tanh \left(\frac{t}{2L} \sqrt{2gh} \right) = \tanh \left(\frac{3}{2(5)} \sqrt{2(9.81)h} \right) = \tanh \left(1.3288\sqrt{h} \right)$$
Solution of Equation

Plot the two sides of the equation as separate functions of \(h \), then find their intersections. In this case, the two graphs intersect around \(h = 1.45 \) m, so the original equation is satisfied with \(h = 1.45 \) m.
Incremental Search Method

Incremental search is the most basic automated numerical method for solving nonlinear equations. The method:

1. Pick a starting point x_0 and a step size Δx. Use a positive Δx if you want to search to the right, and a negative Δx if you want to search to the left.

2. Let $x_1 = x_0 + \Delta x$ and calculate $f(x_0)$ and $f(x_1)$.

3. If the sign of $f(x)$ changes between x_0 and x_1, it is assumed that a root of $f(x)$ exists on the interval (x_0, x_1).

4. If the sign of $f(x)$ does not change between x_0 and x_1, let $x_2 = x_1 + \Delta x$ and repeat the process.
Find the root of the equation

\[f(x) = \frac{1.1288}{\sqrt{h}} - \tanh \left(1.3288 \sqrt{h} \right) = 0 \]

using the incremental search method with \(x_0 = 1.0 \) and \(\Delta x = 0.1 \).

Evaluate the function \(f(x) \) at \(x = 1.0, 1.1, 1.2, \ldots \):

- \(x_0 = 1.0 \) \hspace{1cm} \(f(x_0) = 0.2598 \)
- \(x_1 = 1.1 \) \hspace{1cm} \(f(x_1) = 0.1923 \)
- \(x_2 = 1.2 \) \hspace{1cm} \(f(x_2) = 0.1336 \)
- \(x_3 = 1.3 \) \hspace{1cm} \(f(x_3) = 0.0822 \)
- \(x_4 = 1.4 \) \hspace{1cm} \(f(x_4) = 0.0366 \)
- \(x_5 = 1.5 \) \hspace{1cm} \(f(x_5) = -0.0040 \)
Since the sign of $f(x)$ changed between $x = 1.4$ and $x = 1.5$, we assume there is a root of $f(x)$ between 1.4 and 1.5. Repeating this method with $x_0 = 1.4$ and $\Delta x = 0.01$ would allow us to make a more accurate estimate of the root.
Incremental Search Limitations

- Only finds real-valued roots of $f(x)$. It cannot find complex roots of polynomials.
- Only finds roots where $f(x)$ crosses the x axis. It cannot find roots where $f(x)$ is tangent to the x axis.
- May be fooled by singularities in $f(x)$, such as in the tangent and cotangent functions.
- If the step size Δx is too large, you may miss closely-spaced roots by skipping over them.
Example of Singularities

\[f(x) = \cot x \]
Homework

- Read articles on course homepage labeled “Lec. 01 Reading”.
- Read and work along with examples given in Chapters 1–2 of *Getting Started with MATLAB 7* (link on course homepage).
- Be prepared to receive homework assignments on bisection and Newton-Raphson methods Monday.