Ultra-Wideband (UWB) Wireless Communications

Robert Qiu
Associate Professor
Tennessee Technological University
rqiu@IEEE.ORG

Presented at Army Research Lab
Adelphi, Maryland,
June 4, 2004
Outline

- Introduction
- UWB Principles
- IEEE 802.15.3a/IEEE 802.15.4a
 - Receiver Design Challenges
 - OFDM and Pulse-based UWB
- Physics-Based Optimum Receiver Structures
 - Communication Theory and Physics (Gabor 1953)
- Conclusion
Wireless Networking Systems Lab

- Established Aug. 1 2003
- UWB/3G/4G physical layer and cellular network levels
- Radio Propagation and Channel Modeling
- Receiver analysis and design
- Hardware prototyping
- Working with industrial and DOD R&D organizations.
- 10+ years R&D experiences in wireless communications
Mobile Devices Market Segmentation

- Modules - Embedded Apps
- Telematics / Telemetry

Add-On Devices

Data Devices w/ Integral Wireless

Business / Smart Phones

Basic Phones

Wireless Networking Systems Lab TTU

Nokia 3330

PDQ

Ericsson R380

Blackberry

Palm

Greater Multi-Media Capability
Larger Displays / Touch-Screens and Keyboards

Multi Wireless Modes & Generally Higher Data Rates

HandSpring Visor, Spring Board Modules

Ericsson R380 Smart Phone

Palm

Palm

Nokia 3330

PDQ

Ericsson R380

Blackberry

Palm

Greater Multi-Media Capability
Larger Displays / Touch-Screens and Keyboards

Multi Wireless Modes & Generally Higher Data Rates

HandSpring Visor, Spring Board Modules
3G & UWB Combining Air Interface

Complementing Technologies

Wide Area Network

Local Area Network

Personal Area Network

WLAN

UWB

3G

WCDMA

EDGE

CDMA2000

Not to Scale
1 Wide Area cell = ~10 000 WLAN cells

Wireless Networking Systems Lab
TTU

Robert Qiu
The UWB Home Wireless Network

Broadband services: Cable, xDSL, Satellite, Terrestrial

IEEE 802.15.3a
UWB Communications & Sensor Networks

Applications
- Remote surveillance, threat detection
- Video to the foxhole/battlefield
- High-resolution location services

Key Technologies
- Ultra-wide band systems
- Mobile, adhoc networks
- Data fusion / synthesis

Open Research Issues
- Pulse Propagation
- Optimum Receiver
- Test-bed development / trials

Environments
- Real-time
- Distributed
- Dynamic
- Hostile

IEEE 802.15.4a
DARPA Networking in Extreme Environments (NETEX)

Wireless Networking Systems Lab
TTU
What Is Ultra-Wideband (UWB)?

- **Definition (In radar, etc)**

 \[
 2 \frac{f_u - f_l}{f_u + f_l} \geq 0.25 = 25\%
 \]

 Where:

 \(f_u = \) upper 10 dB down point
 \(f_l = \) lower 10 dB down point

- Or greater than **500 MHz (FCC Feb 2002)**

- At FCC Part 15 powers (a few tens of **microwatts** total - across several GHz), cannot be reliably measured below 10 dB down points

Wireless Networking Systems Lab
TTU

Robert Qiu
7.5 GHz UWB Spectrum Allocated by FCC 02/2003

Source: IBM Research

- Conventional carrier modulation
- Direct sequence spread spectrum
- Ultra-wideband

Frequency (GHz):
- GSM-900
- IS-54
- IS-95
- AMPS
- GSM-1.8
- DECT
- GSM-1.9
- IMT-2000
- 802.11b
- Bluetooth
- HomeRF
- 802.15.4
- IEEE 802.11a
- ETSI Hiperlan
- ARIB MMAC

Ultra-wideband (10.6 GHz)
Time Modulated Ultra-Wideband—An Example

- Not a sinewave, but millions of pulses per second
- Time coded to make noise-like
 - Channelization
 - Anti-jam
 - Smooths spectrum
- Pulse position modulation

\[\delta = 125 \text{ ps} \]

Wireless Networking Systems Lab
TTU

Robert Qiu
UWB

- FCC allocated 7.5 GHz unlicensed spectrum (2002)
- Requires shift in thinking
- Short “Pulses” are building blocks.
- Fading is not a major issue
- Too many resolvable quasi-static pulses
- Pulse distortion
- Deterministic solutions from Maxwell’s equations
- UWB radio may be good for low data rate (<a few Mb/s) applications (IEEE 802.15.4a)
Experimental Setup

0.5 ns pulse
UWB Pulse Spectrum

Wireless Networking Systems Lab
TTU

Robert Qiu
Indoor

Wireless Networking Systems Lab
TTU

Robert Qiu
Outdoor

Wireless Networking Systems Lab
TTU

Flat grass ground
Reflection from buildings
Representative Measurements (USC)

- Blocked LoS
- Hold Recvd Clear LoS
- Hold Recvd Blkd LoS

Wireless Networking Systems Lab
TTU

Robert Qiu
Per-Path Pulse distortion

- Channel distortion
 - Pulse delay
 - per-path pulse distortion
- A new phenomenon for UWB.
- Caused by frequency-selectivity of the channel medium.
UWB Receiver Design Challenges

- Energy collection versus complexity (cost)
 - RAKE may be too costly
- Time synchronization
- Inter-symbol interference (ISI)
 - 10 symbols overlapping for indoor (100 Mbps)
 - Symbol-level equalizer
- Non-coherent detector
 - Transmitted reference
 - Energy-detector
Why UWB and why spectrum agility?

- **Why UWB for IEEE 802.15.3a?**
 - UWB technology is uniquely suited for high-rate, short range access
 - Theoretical advantages for approaching high rates by scaling bandwidth
 - Newly allocated unlicensed spectrum (7.5 GHz) that does not take away from other narrowband systems (licensed or unlicensed)
 - CMOS implementations now possible at these higher frequencies ➔ All CMOS architecture

- **Why spectrum agility for a UWB solution?**
 - Just because the FCC allows UWB to transmit on top of other services does not mean we should!
 - Government regulations should be broader than industry requirements
 - Spectrum usage and interference environment changes by country location, within a local usage area, and over time
 - Enable adaptive detection and avoidance strategies for better coexistence and possible non-contiguous spectrum allocations for flexible regulations in future
 - Allow for simple backward compatibility and future scalability
Flexible Spectrum Use

- Center frequencies chosen for ease of implementation
- 440 MHz band separation for improved flexibility
- ~538 MHz wide bands to best utilize spectrum

(based on regulation and geographical location)
Communications and Physics (Gabor 1953)

- The electromagnetic signals used in wireless communication are subject to the general laws of radiation and propagation.
- Communication theory developed mainly mathematical lines, taking for granted the physical significance of the quantities which figure in its formalism.
- Communication is the transmission of physical effects.
- Hence communication theory should be considered as a branch of physics.
Physics-Based Channel Model and Optimum Receiver Structures

- **Goal:** Connect the time-domain electromagnetics and communication (information) theory.
- **Mission:** Develop the optimum detection theory of physical signals governed by Maxwell’s Equations.
- **Tasks:**
 - Channel model models based on experiments and theory (analytical and computer simulations)
 - Optimum detection theory and information theory
 - Sub-optimum receivers
 - Hardware system (transceiver) prototyping
Per-Path Pulse Distortion Based UWB Channel

\[
(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) E(t, t'; r, r') = -\delta(t - t') \delta(r - r')
\]

\[
(\nabla^2 + k^2) E(k, r, r') = \delta(r - r')
\]

\[
\alpha_n = -\frac{1}{2} \quad \text{for a single edge diffraction}
\]

Multiple diffraction must be included!
Concept of UWB Pulse Distortion due to Diffraction

\[h(\tau) = \sum_{n=1}^{N_{GO}} A_n \delta(\tau - \tau_n) + \sum_{n=1}^{N_{2GO}} B_n R_n(\tau) \otimes \delta(\tau - \tau_n) + \sum_{n=1}^{N_{GTD}} C_n g_n(\tau) \otimes \delta(\tau - \tau_n) + \sum_{n=1}^{N_{GO+GTD}} D_n [R_n(\tau) \otimes g_n(\tau)] \delta(\tau - \tau_n) \]

UWB pulse distortion is a physical phenomenon !!!

Robert Qiu
Physics-Based Multipath Channel Model

Turin’s Model
Since 1956

\[h(\tau) = \sum_{n=1}^{N} A_n e^{j\phi_n} \delta(\tau - \tau_n) \]

\[h_n(\tau) = \text{per path impulse response} \]

Wireless Networking Systems Lab
TTU
Diffraction-Based Pulse Shape Distortion

Diffracted Signal $d(t)$ and Template Signal $v(t)$

alpha = -1: 0.25: 0 (bottom to top)

- alpha=0 $$\Rightarrow$$ Incident Waveform

Red dashed $$\Rightarrow$$ Template Pulse $v(t)$
Per-Path Impulse Response
(CharACTERIZING THE PULSE WAVEFORM)

\[h_n(\tau) = \begin{cases}
\xi(\tau_\alpha - \tau) \sum_{n=0}^{\infty} \frac{C_n}{n!} (\tau_\alpha - \tau)^n, & \tau < \tau_\alpha \\
\eta(\tau_\alpha - \tau) \sum_{n=0}^{\infty} \frac{D_n}{n!} (\tau_\alpha - \tau)^n, & \tau > \tau_\alpha
\end{cases} \]

\[H_n(\omega) = \sum_{n=0}^{\infty} \left\{ \frac{D_n}{n!} \frac{1}{(j\omega)^n} \int_0^{\infty} \eta\left(\frac{t}{j\omega}\right) t^n e^{-t} dt - \frac{C_n}{n!} \frac{1}{(-j\omega)^n} \int_0^{\infty} \xi\left(\frac{t}{-j\omega}\right) t^n e^{-t} dt \right\} \]

Example:

\[\xi(\tau) = 1/\sqrt{\tau} \quad \eta(\tau) = 1/\sqrt{\tau} \]

Pulse diffracted by a PEC Edge
Comparison of Exact Solution with Asymptotic GTD/UTD Solutions

Direct=0.35 Reflected = 0.65 Diffracted= 0.92735

Cross-Correlation

UTD Keller Felsen Exact

Wireless Networking Systems Lab
TTU

Robert Qiu
UWB Pulse Shape Transform Caused by Diffraction

\[H_n(j\omega) = (j\omega)^{\alpha_n} \]
Physics-Based Optimum Receiver Structures

Received signals $r(t) \rightarrow$ Matched Filter $y^*(-t) \rightarrow$ Sampler $t = nT_s \rightarrow$ MLSE (Viterbi)

Mathematical equations:

- $r(t) = \sum_{n=-\infty}^{\infty} a_n y(t - nT_s) + n(t)$
- $y(t) = x(t) \otimes h(t)$
- $h(t) = \sum_{n=1}^{N} A_n h_n(t) \otimes \delta(t - \tau_n)$
- $x(t) = \text{transmitted pulse shape}$

Inter-symbol Interference or Multiuser Detection

Wireless Networking Systems Lab
TTU

Robert Qiu
Summary

- UWB is one of the most promising technologies
 - 7.5 GHz unlicensed spectrum from 3.1-10.6 GHz
 - Volume products will be shipped in 3-4 years

- UWB is good for both short-range (10-30m) and long-range (100-1000m)

- Per path pulse distortion in a UWB channel is one of the major potential problems in system design
 - Experimental measurements verified
Thank You!

Robert Qiu rqiу@IEEE.ORG